Exercise 4

Repeat Exercise 3 using the function in Figure 10.

Figure $\mathbf{1 0}$ for Exercise 4.

Solution

Part (a)
Notice that the function repeats itself every 4 units, so the period is 4 .

$$
f(x)= \begin{cases}1+x & \text { if }-2 \leq x \leq 0 \\ 1-x & \text { if } 0 \leq x \leq 2 \\ f(x+4) & \text { otherwise }\end{cases}
$$

Part (b)

The function is continuous for all x, so $f(x-)=f(x+)$ everywhere, which means the function is piecewise continuous on $-2 \leq x \leq 2$.

Part (c)

The derivative of f is undefined wherever f has kinks in the graph.

$$
\begin{aligned}
f^{\prime}(x) & = \begin{cases}\frac{d}{d x}(1+x) & \text { if }-2<x<0 \\
\frac{d}{d x}(1-x) & \text { if } 0<x<2 \\
f^{\prime}(x+4) & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if }-2<x<0 \\
-1 & \text { if } 0<x<2 \\
f^{\prime}(x+4) & \text { otherwise }\end{cases}
\end{aligned}
$$

The function's derivative is continuous everywhere except at every even integer.

$$
\{x \mid x \neq 2 k, \quad k=0, \pm 1, \pm 2, \ldots\}
$$

Compute the limits of the derivative at the discontinuities.

$$
\begin{aligned}
& \lim _{x \rightarrow(2 k)^{-}} f^{\prime}(x)= \begin{cases}-1 & \text { if } k \text { is odd } \\
1 & \text { if } k \text { is even }\end{cases} \\
& \lim _{x \rightarrow(2 k)^{+}} f^{\prime}(x)= \begin{cases}1 & \text { if } k \text { is odd } \\
-1 & \text { if } k \text { is even }\end{cases}
\end{aligned}
$$

The function's derivative is piecewise continuous on $-2 \leq x \leq 2$ because $f^{\prime}(-2+)$ and $f^{\prime}(2-)$ exist, and there are only a finite number of discontinuities in $-2<x<2$ that each have existing one-sided limits. Therefore, f is piecewise smooth on $-2 \leq x \leq 2$.

